Skip to content

module random

Source: stdlib/random.codon


N = 624


M = 397


LOG4 = _log(4.0)


NV_MAGICCONST = ((4 * _exp(-0.5)) / _sqrt(2.0))


SG_MAGICCONST = (1.0 + _log(4.5))


TWOPI = (2.0 * _pi)


MATRIX_A = u32(0x9908b0df)


UPPER_MASK = u32(0x80000000)


LOWER_MASK = u32(0x7fffffff)


RandomGenerator @tuple Class is named tuple (cannot write fields)

Fields

data: Ptr[u32]

Properties

index @property Method is a class property

state @property Method is a class property

Magic methods

__new__()

Methods

getstate(self)

setstate(self, state)

genrand_int32(self)

genrand_res53(self)

random(self)

init_u32(self, s: u32)

init_array(self, init_key: Ptr[u32], key_length: int)

init_int(self, s: int)

random_seed_time_pid(self)

seed(self, s: int)

seed(self)


Random

Fields

gen: RandomGenerator

gauss_next: Optional[float]

Magic methods

__init__(self, seed: Optional[int] = None)

Methods

seed(self, a: Optional[int])

getstate(self)

setstate(self, state)

getrandbits(self, k: int)

bit_length(self, n: int)

randrange(self, start: int, stop: int, step: int = 1)

randint(self, a: int, b: int)

random(self)

choice(self, sequence: Generator[T], T: type)

choice(self, sequence: List[T], T: type) @overload Function is overloaded

shuffle(self, x)

uniform(self, a, b)

triangular(self, low: float, high: float, mode: float)

gammavariate(self, alpha: float, beta: float)

betavariate(self, alpha: float, beta: float)

expovariate(self, lambd: float)

gauss(self, mu: float = 0.0, sigma: float = 1.0)

paretovariate(self, alpha: float)

weibullvariate(self, alpha: float, beta: float)

normalvariate(self, mu: float = 0.0, sigma: float = 1.0)

lognormvariate(self, mu: float, sigma: float)

vonmisesvariate(self, mu: float, kappa: float)

sample(self, population, k: int)

choices(self, population, weights: Optional[List[int]], cum_weights: Optional[List[int]], k: int)


seed(a: int)


getrandbits(k: int)


randrange(start: int, stop: Optional[int] = None, step: int = 1)


randint(a: int, b: int)


choice(s)


choices(population, weights: Optional[List[int]] = None, cum_weights: Optional[List[int]] = None, k: int = 1)


shuffle(s)


sample(population, k: int)


random()


uniform(a, b)


triangular(low: float = 0.0, high: float = 1.0, mode: Optional[float] = None)


betavariate(alpha: float, beta: float)


expovariate(lambd: float)


gammavariate(alpha: float, beta: float)


gauss(mu: float, sigma: float)


lognormvariate(mu: float, sigma: float)


normalvariate(mu: float, sigma: float)


vonmisesvariate(mu: float, kappa: float)


paretovariate(alpha: float)


weibullvariate(alpha: float, beta: float)