module random
¶
Source: stdlib/random.codon
random
¶Source: stdlib/random.codon
N
= 624
¶M
= 397
¶LOG4
= _log(4.0)
¶NV_MAGICCONST
= ((4 * _exp(-0.5)) / _sqrt(2.0))
¶SG_MAGICCONST
= (1.0 + _log(4.5))
¶TWOPI
= (2.0 * _pi)
¶MATRIX_A
= u32(0x9908b0df)
¶UPPER_MASK
= u32(0x80000000)
¶LOWER_MASK
= u32(0x7fffffff)
¶RandomGenerator
@tuple Class is named tuple (cannot write fields) ¶data
: Ptr[u32]
¶index
@property Method is a class property ¶state
@property Method is a class property ¶__new__()
¶getstate(self)
¶setstate(self, state)
¶genrand_int32(self)
¶genrand_res53(self)
¶random(self)
¶init_u32(self, s: u32)
¶init_array(self, init_key: Ptr[u32], key_length: int)
¶init_int(self, s: int)
¶random_seed_time_pid(self)
¶seed(self, s: int)
¶seed(self)
¶Random
¶gen
: RandomGenerator
¶gauss_next
: Optional[float]
¶__init__(self, seed: Optional[int] = None)
¶seed(self, a: Optional[int])
¶getstate(self)
¶setstate(self, state)
¶getrandbits(self, k: int)
¶bit_length(self, n: int)
¶randrange(self, start: int, stop: int, step: int = 1)
¶randint(self, a: int, b: int)
¶random(self)
¶choice(self, sequence: Generator[T], T: type)
¶choice(self, sequence: List[T], T: type)
@overload Function is overloaded ¶shuffle(self, x)
¶uniform(self, a, b)
¶triangular(self, low: float, high: float, mode: float)
¶gammavariate(self, alpha: float, beta: float)
¶betavariate(self, alpha: float, beta: float)
¶expovariate(self, lambd: float)
¶gauss(self, mu: float = 0.0, sigma: float = 1.0)
¶paretovariate(self, alpha: float)
¶weibullvariate(self, alpha: float, beta: float)
¶normalvariate(self, mu: float = 0.0, sigma: float = 1.0)
¶lognormvariate(self, mu: float, sigma: float)
¶vonmisesvariate(self, mu: float, kappa: float)
¶sample(self, population, k: int)
¶choices(self, population, weights: Optional[List[int]], cum_weights: Optional[List[int]], k: int)
¶seed(a: int)
¶getrandbits(k: int)
¶randrange(start: int, stop: Optional[int] = None, step: int = 1)
¶randint(a: int, b: int)
¶choice(s)
¶choices(population, weights: Optional[List[int]] = None, cum_weights: Optional[List[int]] = None, k: int = 1)
¶shuffle(s)
¶sample(population, k: int)
¶random()
¶uniform(a, b)
¶triangular(low: float = 0.0, high: float = 1.0, mode: Optional[float] = None)
¶betavariate(alpha: float, beta: float)
¶expovariate(lambd: float)
¶gammavariate(alpha: float, beta: float)
¶gauss(mu: float, sigma: float)
¶lognormvariate(mu: float, sigma: float)
¶normalvariate(mu: float, sigma: float)
¶vonmisesvariate(mu: float, kappa: float)
¶paretovariate(alpha: float)
¶weibullvariate(alpha: float, beta: float)
¶