module numpy.random.bitgen
¶
Source: stdlib/numpy/random/bitgen.codon
numpy.random.bitgen
¶Source: stdlib/numpy/random/bitgen.codon
u128
= UInt[128]
¶Binomial
¶psave
: float
¶nsave
: int
¶r
: float
¶q
: float
¶fm
: float
¶m
: int
¶p1
: float
¶xm
: float
¶xl
: float
¶xr
: float
¶c
: float
¶laml
: float
¶lamr
: float
¶p2
: float
¶p3
: float
¶p4
: float
¶__init__(self)
¶BitGenerator[G]
¶state
: G
¶binomial
: Optional[Binomial]
¶uinteger
: u32
¶has_uint32
: bool
¶G
: type
¶seed_seq
@property Method is a class property ¶__init__(self, state: G)
¶next64(self)
¶next32(self)
¶next_double(self)
¶next_float(self)
¶jumped(self, jumps: int)
¶standard_uniform(self)
¶standard_uniform_f(self)
¶random_standard_uniform_fill(self, cnt: int, out: Ptr[float])
¶random_standard_uniform_fill_f(self, cnt: int, out: Ptr[float32])
¶standard_exponential_unlikely(self, idx: int, x: float)
¶random_standard_exponential(self)
¶random_standard_exponential_fill(self, cnt: int, out: Ptr[float])
¶standard_exponential_unlikely_f(self, idx: int, x: float32)
¶random_standard_exponential_f(self)
¶random_standard_exponential_fill_f(self, cnt: int, out: Ptr[float32])
¶random_standard_exponential_inv_fill(self, cnt: int, out: Ptr[float])
¶random_standard_exponential_inv_fill_f(self, cnt: int, out: Ptr[float32])
¶random_standard_normal(self)
¶random_standard_normal_fill(self, cnt: int, out: Ptr[float])
¶random_standard_normal_f(self)
¶random_standard_normal_fill_f(self, cnt: int, out: Ptr[float32])
¶random_standard_gamma(self, shape: float)
¶random_standard_gamma_f(self, shape: float32)
¶random_positive_int64(self)
¶random_positive_int32(self)
¶random_positive_int(self)
¶random_uint(self)
¶random_loggam(x: float)
¶random_normal(self, loc: float, scale: float)
¶random_exponential(self, scale: float)
¶random_uniform(self, off: float, rng: float)
¶random_gamma(self, shape: float, scale: float)
¶random_gamma_f(self, shape: float32, scale: float32)
¶random_beta(self, a: float, b: float)
¶random_chisquare(self, df: float)
¶random_f(self, dfnum: float, dfden: float)
¶random_standard_cauchy(self)
¶random_pareto(self, a: float)
¶random_weibull(self, a: float)
¶random_power(self, a: float)
¶random_laplace(self, loc: float, scale: float)
¶random_gumbel(self, loc: float, scale: float)
¶random_logistic(self, loc: float, scale: float)
¶random_lognormal(self, mean: float, sigma: float)
¶random_rayleigh(self, mode: float)
¶random_standard_t(self, df: float)
¶random_poisson_mult(self, lam: float)
¶random_poisson_ptrs(self, lam: float)
¶random_poisson(self, lam: float)
¶random_negative_binomial(self, n: float, p: float)
¶random_binomial_btpe(self, n: int, p: float)
¶random_binomial_inversion(self, n: int, p: float)
¶random_binomial(self, p: float, n: int)
¶random_noncentral_chisquare(self, df: float, nonc: float)
¶random_noncentral_f(self, dfnum: float, dfden: float, nonc: float)
¶random_wald(self, mean: float, scale: float)
¶random_vonmises(self, mu: float, kappa: float)
¶random_logseries(self, p: float)
¶random_geometric_search(self, p: float)
¶random_geometric_inversion(self, p: float)
¶random_geometric(self, p: float)
¶random_zipf(self, a: float)
¶random_triangular(self, left: float, mode: float, right: float)
¶random_interval(self, max: u64)
¶gen_mask(max: u64)
¶buffered_uint16(self, bcnt: int, buf: u32)
¶buffered_uint8(self, bcnt: int, buf: u32)
¶bounded_masked_uint64(self, rng: u64, mask: u64)
¶buffered_bounded_masked_uint32(self, rng: u32, mask: u32, bcnt: int, buf: u32)
¶buffered_bounded_masked_uint16(self, rng: u16, mask: u16, bcnt: int, buf: u32)
¶buffered_bounded_masked_uint8(self, rng: u8, mask: u8, bcnt: int, buf: u32)
¶buffered_bounded_bool(self, off: bool, rng: bool, mask: bool, bcnt: int, buf: u32)
¶bounded_lemire_uint64(self, rng: u64)
¶buffered_bounded_lemire_uint32(self, rng: u32, bcnt: int, buf: u32)
¶buffered_bounded_lemire_uint16(self, rng: u16, bcnt: int, buf: u32)
¶buffered_bounded_lemire_uint8(self, rng: u8, bcnt: int, buf: u32)
¶random_bounded_uint64(self, off: u64, rng: u64, mask: u64, use_masked: bool)
¶random_buffered_bounded_uint32(self, off: u32, rng: u32, mask: u32, use_masked: bool, bcnt: int, buf: u32)
¶random_buffered_bounded_uint16(self, off: u16, rng: u16, mask: u16, use_masked: bool, bcnt: int, buf: u32)
¶random_buffered_bounded_uint8(self, off: u8, rng: u8, mask: u8, use_masked: bool, bcnt: int, buf: u32)
¶random_buffered_bounded_bool(self, off: bool, rng: bool, mask: bool, use_masked_bool, bcnt: int, buf: u32)
¶random_bounded_uint64_fill(self, off: u64, rng: u64, cnt: int, use_masked: bool, out: Ptr[u64])
¶random_bounded_uint32_fill(self, off: u32, rng: u32, cnt: int, use_masked: bool, out: Ptr[u32])
¶random_bounded_uint16_fill(self, off: u16, rng: u16, cnt: int, use_masked: bool, out: Ptr[u16])
¶random_bounded_uint8_fill(self, off: u8, rng: u8, cnt: int, use_masked: bool, out: Ptr[u8])
¶random_bounded_bool_fill(self, off: bool, rng: bool, cnt: int, use_masked: bool, out: Ptr[bool])
¶random_multinomial(self, n: int, mnix: Ptr[int], pix: Ptr[float], d: int)
¶hypergeometric_sample(self, good: int, bad: int, sample: int)
¶hypergeometric_hrua(self, good: int, bad: int, sample: int)
¶random_hypergeometric(self, good: int, bad: int, sample: int)
¶random_multivariate_hypergeometric_count(self, total: int, num_colors: int, colors: Ptr[int], nsample: int, num_variates: int, variates: Ptr[int])
¶random_multivariate_hypergeometric_marginals(self, total: int, num_colors: int, colors: Ptr[int], nsample: int, num_variates: int, variates: Ptr[int])
¶next_raw(self)
¶random_raw(self, lock, size, output)
¶random_raw(self, size = None)
¶shuffle_raw(self, n: int, first: int, itemsize: int, stride: int, data: cobj, buf: cobj)
¶shuffle_int(self, n: int, first: int, data: Ptr[int])
¶shuffle_raw_wrap(self, n: int, first: int, itemsize: int, stride: int, data: cobj, buf: cobj)
¶validate_output_shape(iter_shape, output: ndarray)
¶check_output(out, dtype: type, size, require_c_array: bool)
¶double_fill(func, size, lock, out)
¶float_fill(func, size, lock, out)
¶float_fill_from_double(func, size, lock, out)
¶CONS_NONE
: Literal[int]
= 0
¶CONS_NON_NEGATIVE
: Literal[int]
= 1
¶CONS_POSITIVE
: Literal[int]
= 2
¶CONS_POSITIVE_NOT_NAN
: Literal[int]
= 3
¶CONS_BOUNDED_0_1
: Literal[int]
= 4
¶CONS_BOUNDED_GT_0_1
: Literal[int]
= 5
¶CONS_BOUNDED_LT_0_1
: Literal[int]
= 6
¶CONS_GT_1
: Literal[int]
= 7
¶CONS_GTE_1
: Literal[int]
= 8
¶CONS_POISSON
: Literal[int]
= 9
¶MAX_INT
= 0x7FFFFFFFFFFFFFFF
¶MAXSIZE
= MAX_INT
¶POISSON_LAM_MAX
= (MAX_INT - (sqrt(float(MAX_INT)) * 10))
¶check_array_constraint(val, name: str, const: int)
¶convert_array_like(a)
¶gather_arrays(t)
¶cont(fn, size, lock, arrays, names, constraints, out = None, dtype: type = float)
¶kahan_sum(darr: Ptr[float], n: int)
¶Generator[G]
@tuple Class is named tuple (cannot write fields) ¶lock
: Lock
¶bit_generator
: BitGenerator[G]
¶G
: type
¶__new__(g: G)
¶__str__(self)
¶spawn(self, n_children: int)
¶random(self, size = None, dtype: type = float, out = None)
¶beta(self, a, b, size = None)
¶exponential(self, scale = 1.0, size = None)
¶standard_exponential(self, size = None, dtype: type = float, method: str = "zig", out = None)
¶integers(self, low, high = None, size = None, dtype: type = int, endpoint: bool = False)
¶bytes(self, length: int)
¶choice(self, a, size = None, replace: bool = True, p = None, axis: int = 0, shuffle: bool = True)
¶uniform(self, low = 0.0, high = 1.0, size = None)
¶standard_normal(self, size = None, dtype: type = float, out = None)
¶normal(self, loc = 0.0, scale = 1.0, size = None)
¶standard_gamma(self, shape, size = None, dtype: type = float, out = None)
¶gamma(self, shape, scale = 1.0, size = None)
¶f(self, dfnum, dfden, size = None)
¶noncentral_f(self, dfnum, dfden, nonc, size = None)
¶chisquare(self, df, size = None)
¶noncentral_chisquare(self, df, nonc, size = None)
¶standard_cauchy(self, size = None)
¶standard_t(self, df, size = None)
¶vonmises(self, mu, kappa, size = None)
¶pareto(self, a, size = None)
¶weibull(self, a, size = None)
¶power(self, a, size = None)
¶laplace(self, loc = 0.0, scale = 1.0, size = None)
¶gumbel(self, loc = 0.0, scale = 1.0, size = None)
¶logistic(self, loc = 0.0, scale = 1.0, size = None)
¶lognormal(self, mean = 0.0, sigma = 1.0, size = None)
¶rayleigh(self, scale = 1.0, size = None)
¶wald(self, mean, scale, size = None)
¶triangular(self, left, mode, right, size = None)
¶binomial(self, n, p, size = None)
¶negative_binomial(self, n, p, size = None)
¶poisson(self, lam = 1.0, size = None)
¶zipf(self, a, size = None)
¶geometric(self, p, size = None)
¶hypergeometric(self, ngood, nbad, nsample, size = None)
¶logseries(self, p, size = None)
¶multivariate_normal(self, mean, cov, size = None, check_valid: Literal[str] = "warn", tol: float = 1e-8, method: Literal[str] = "svd")
¶multinomial(self, n, pvals, size = None)
¶multivariate_hypergeometric(self, colors, nsample: int, size = None, method: str = "marginals")
¶dirichlet(self, alpha, size = None)
¶permuted(self, x, axis = None, out = None)
¶shuffle(self, x, axis: int = 0)
¶permutation(self, x, axis: int = 0)
¶