module numpy.random.bitgen¶
Source: stdlib/numpy/random/bitgen.codon
numpy.random.bitgen¶Source: stdlib/numpy/random/bitgen.codon
u128 = UInt[128]¶Binomial¶psave: float¶nsave: int¶r: float¶q: float¶fm: float¶m: int¶p1: float¶xm: float¶xl: float¶xr: float¶c: float¶laml: float¶lamr: float¶p2: float¶p3: float¶p4: float¶__init__(self)¶BitGenerator[G]¶state: G¶binomial: Optional[Binomial]¶uinteger: u32¶has_uint32: bool¶G: type¶seed_seq @property Method is a class property ¶__init__(self, state: G)¶next64(self)¶next32(self)¶next_double(self)¶next_float(self)¶jumped(self, jumps: int)¶standard_uniform(self)¶standard_uniform_f(self)¶random_standard_uniform_fill(self, cnt: int, out: Ptr[float])¶random_standard_uniform_fill_f(self, cnt: int, out: Ptr[float32])¶standard_exponential_unlikely(self, idx: int, x: float)¶random_standard_exponential(self)¶random_standard_exponential_fill(self, cnt: int, out: Ptr[float])¶standard_exponential_unlikely_f(self, idx: int, x: float32)¶random_standard_exponential_f(self)¶random_standard_exponential_fill_f(self, cnt: int, out: Ptr[float32])¶random_standard_exponential_inv_fill(self, cnt: int, out: Ptr[float])¶random_standard_exponential_inv_fill_f(self, cnt: int, out: Ptr[float32])¶random_standard_normal(self)¶random_standard_normal_fill(self, cnt: int, out: Ptr[float])¶random_standard_normal_f(self)¶random_standard_normal_fill_f(self, cnt: int, out: Ptr[float32])¶random_standard_gamma(self, shape: float)¶random_standard_gamma_f(self, shape: float32)¶random_positive_int64(self)¶random_positive_int32(self)¶random_positive_int(self)¶random_uint(self)¶random_loggam(x: float)¶random_normal(self, loc: float, scale: float)¶random_exponential(self, scale: float)¶random_uniform(self, off: float, rng: float)¶random_gamma(self, shape: float, scale: float)¶random_gamma_f(self, shape: float32, scale: float32)¶random_beta(self, a: float, b: float)¶random_chisquare(self, df: float)¶random_f(self, dfnum: float, dfden: float)¶random_standard_cauchy(self)¶random_pareto(self, a: float)¶random_weibull(self, a: float)¶random_power(self, a: float)¶random_laplace(self, loc: float, scale: float)¶random_gumbel(self, loc: float, scale: float)¶random_logistic(self, loc: float, scale: float)¶random_lognormal(self, mean: float, sigma: float)¶random_rayleigh(self, mode: float)¶random_standard_t(self, df: float)¶random_poisson_mult(self, lam: float)¶random_poisson_ptrs(self, lam: float)¶random_poisson(self, lam: float)¶random_negative_binomial(self, n: float, p: float)¶random_binomial_btpe(self, n: int, p: float)¶random_binomial_inversion(self, n: int, p: float)¶random_binomial(self, p: float, n: int)¶random_noncentral_chisquare(self, df: float, nonc: float)¶random_noncentral_f(self, dfnum: float, dfden: float, nonc: float)¶random_wald(self, mean: float, scale: float)¶random_vonmises(self, mu: float, kappa: float)¶random_logseries(self, p: float)¶random_geometric_search(self, p: float)¶random_geometric_inversion(self, p: float)¶random_geometric(self, p: float)¶random_zipf(self, a: float)¶random_triangular(self, left: float, mode: float, right: float)¶random_interval(self, max: u64)¶gen_mask(max: u64)¶buffered_uint16(self, bcnt: int, buf: u32)¶buffered_uint8(self, bcnt: int, buf: u32)¶bounded_masked_uint64(self, rng: u64, mask: u64)¶buffered_bounded_masked_uint32(self, rng: u32, mask: u32, bcnt: int, buf: u32)¶buffered_bounded_masked_uint16(self, rng: u16, mask: u16, bcnt: int, buf: u32)¶buffered_bounded_masked_uint8(self, rng: u8, mask: u8, bcnt: int, buf: u32)¶buffered_bounded_bool(self, off: bool, rng: bool, mask: bool, bcnt: int, buf: u32)¶bounded_lemire_uint64(self, rng: u64)¶buffered_bounded_lemire_uint32(self, rng: u32, bcnt: int, buf: u32)¶buffered_bounded_lemire_uint16(self, rng: u16, bcnt: int, buf: u32)¶buffered_bounded_lemire_uint8(self, rng: u8, bcnt: int, buf: u32)¶random_bounded_uint64(self, off: u64, rng: u64, mask: u64, use_masked: bool)¶random_buffered_bounded_uint32(self, off: u32, rng: u32, mask: u32, use_masked: bool, bcnt: int, buf: u32)¶random_buffered_bounded_uint16(self, off: u16, rng: u16, mask: u16, use_masked: bool, bcnt: int, buf: u32)¶random_buffered_bounded_uint8(self, off: u8, rng: u8, mask: u8, use_masked: bool, bcnt: int, buf: u32)¶random_buffered_bounded_bool(self, off: bool, rng: bool, mask: bool, use_masked_bool, bcnt: int, buf: u32)¶random_bounded_uint64_fill(self, off: u64, rng: u64, cnt: int, use_masked: bool, out: Ptr[u64])¶random_bounded_uint32_fill(self, off: u32, rng: u32, cnt: int, use_masked: bool, out: Ptr[u32])¶random_bounded_uint16_fill(self, off: u16, rng: u16, cnt: int, use_masked: bool, out: Ptr[u16])¶random_bounded_uint8_fill(self, off: u8, rng: u8, cnt: int, use_masked: bool, out: Ptr[u8])¶random_bounded_bool_fill(self, off: bool, rng: bool, cnt: int, use_masked: bool, out: Ptr[bool])¶random_multinomial(self, n: int, mnix: Ptr[int], pix: Ptr[float], d: int)¶hypergeometric_sample(self, good: int, bad: int, sample: int)¶hypergeometric_hrua(self, good: int, bad: int, sample: int)¶random_hypergeometric(self, good: int, bad: int, sample: int)¶random_multivariate_hypergeometric_count(self, total: int, num_colors: int, colors: Ptr[int], nsample: int, num_variates: int, variates: Ptr[int])¶random_multivariate_hypergeometric_marginals(self, total: int, num_colors: int, colors: Ptr[int], nsample: int, num_variates: int, variates: Ptr[int])¶next_raw(self)¶random_raw(self, lock, size, output)¶random_raw(self, size = None)¶shuffle_raw(self, n: int, first: int, itemsize: int, stride: int, data: cobj, buf: cobj)¶shuffle_int(self, n: int, first: int, data: Ptr[int])¶shuffle_raw_wrap(self, n: int, first: int, itemsize: int, stride: int, data: cobj, buf: cobj)¶validate_output_shape(iter_shape, output: ndarray)¶check_output(out, dtype: type, size, require_c_array: bool)¶double_fill(func, size, lock, out)¶float_fill(func, size, lock, out)¶float_fill_from_double(func, size, lock, out)¶CONS_NONE: Literal[int] = 0¶CONS_NON_NEGATIVE: Literal[int] = 1¶CONS_POSITIVE: Literal[int] = 2¶CONS_POSITIVE_NOT_NAN: Literal[int] = 3¶CONS_BOUNDED_0_1: Literal[int] = 4¶CONS_BOUNDED_GT_0_1: Literal[int] = 5¶CONS_BOUNDED_LT_0_1: Literal[int] = 6¶CONS_GT_1: Literal[int] = 7¶CONS_GTE_1: Literal[int] = 8¶CONS_POISSON: Literal[int] = 9¶MAX_INT = 0x7FFFFFFFFFFFFFFF¶MAXSIZE = MAX_INT¶POISSON_LAM_MAX = (MAX_INT - (sqrt(float(MAX_INT)) * 10))¶check_array_constraint(val, name: str, const: int)¶convert_array_like(a)¶gather_arrays(t)¶cont(fn, size, lock, arrays, names, constraints, out = None, dtype: type = float)¶kahan_sum(darr: Ptr[float], n: int)¶Generator[G] @tuple Class is named tuple (cannot write fields) ¶lock: Lock¶bit_generator: BitGenerator[G]¶G: type¶__new__(g: G)¶__str__(self)¶spawn(self, n_children: int)¶random(self, size = None, dtype: type = float, out = None)¶beta(self, a, b, size = None)¶exponential(self, scale = 1.0, size = None)¶standard_exponential(self, size = None, dtype: type = float, method: str = "zig", out = None)¶integers(self, low, high = None, size = None, dtype: type = int, endpoint: bool = False)¶bytes(self, length: int)¶choice(self, a, size = None, replace: bool = True, p = None, axis: int = 0, shuffle: bool = True)¶uniform(self, low = 0.0, high = 1.0, size = None)¶standard_normal(self, size = None, dtype: type = float, out = None)¶normal(self, loc = 0.0, scale = 1.0, size = None)¶standard_gamma(self, shape, size = None, dtype: type = float, out = None)¶gamma(self, shape, scale = 1.0, size = None)¶f(self, dfnum, dfden, size = None)¶noncentral_f(self, dfnum, dfden, nonc, size = None)¶chisquare(self, df, size = None)¶noncentral_chisquare(self, df, nonc, size = None)¶standard_cauchy(self, size = None)¶standard_t(self, df, size = None)¶vonmises(self, mu, kappa, size = None)¶pareto(self, a, size = None)¶weibull(self, a, size = None)¶power(self, a, size = None)¶laplace(self, loc = 0.0, scale = 1.0, size = None)¶gumbel(self, loc = 0.0, scale = 1.0, size = None)¶logistic(self, loc = 0.0, scale = 1.0, size = None)¶lognormal(self, mean = 0.0, sigma = 1.0, size = None)¶rayleigh(self, scale = 1.0, size = None)¶wald(self, mean, scale, size = None)¶triangular(self, left, mode, right, size = None)¶binomial(self, n, p, size = None)¶negative_binomial(self, n, p, size = None)¶poisson(self, lam = 1.0, size = None)¶zipf(self, a, size = None)¶geometric(self, p, size = None)¶hypergeometric(self, ngood, nbad, nsample, size = None)¶logseries(self, p, size = None)¶multivariate_normal(self, mean, cov, size = None, check_valid: Literal[str] = "warn", tol: float = 1e-8, method: Literal[str] = "svd")¶multinomial(self, n, pvals, size = None)¶multivariate_hypergeometric(self, colors, nsample: int, size = None, method: str = "marginals")¶dirichlet(self, alpha, size = None)¶permuted(self, x, axis = None, out = None)¶shuffle(self, x, axis: int = 0)¶permutation(self, x, axis: int = 0)¶