numpy.random
¶
Source: stdlib/numpy/random/__init__.codon
numpy.random
¶Source: stdlib/numpy/random/__init__.codon
default_rng(seed = None)
¶beta(a, b, size = None)
¶binomial(n, p, size = None)
¶bytes(length: int)
¶chisquare(df, size = None)
¶choice(a, size = None, replace: bool = True, p = None)
¶dirichlet(alpha, size = None)
¶exponential(scale = 1.0, size = None)
¶f(dfnum, dfden, size = None)
¶gamma(shape, scale = 1.0, size = None)
¶geometric(p, size = None)
¶get_state(legacy: bool)
¶gumbel(loc = 0.0, scale = 1.0, size = None)
¶hypergeometric(ngood, nbad, nsample, size = None)
¶laplace(loc = 0.0, scale = 1.0, size = None)
¶logistic(loc = 0.0, scale = 1.0, size = None)
¶lognormal(mean = 0.0, sigma = 1.0, size = None)
¶logseries(p, size = None)
¶multinomial(n, pvals, size = None)
¶multivariate_normal(mean, cov, size = None, check_valid: Literal[str] = "warn", tol: float = 1e-8)
¶negative_binomial(n, p, size = None)
¶noncentral_chisquare(df, nonc, size = None)
¶noncentral_f(dfnum, dfden, nonc, size = None)
¶normal(loc = 0.0, scale = 1.0, size = None)
¶pareto(a, size = None)
¶permutation(x)
¶poisson(lam = 1.0, size = None)
¶power(a, size = None)
¶rand(*d)
¶randint(low, high = None, size = None, dtype: type = int)
¶randn(*d)
¶random(size = None)
¶random_integers(low, high = None, size = None)
¶random_sample(size = None)
¶ranf(size = None)
¶rayleigh(scale = 1.0, size = None)
¶sample(size = None)
¶seed(seed = None)
¶set_state(state)
¶shuffle(x)
¶standard_cauchy(size = None)
¶standard_exponential(size = None)
¶standard_gamma(shape, size = None)
¶standard_normal(size = None)
¶standard_t(df, size = None)
¶triangular(left, mode, right, size = None)
¶uniform(low = 0.0, high = 1.0, size = None)
¶vonmises(mu, kappa, size = None)
¶wald(mean, scale, size = None)
¶weibull(a, size = None)
¶zipf(a, size = None)
¶