Skip to content

numpy.random

Source: stdlib/numpy/random/__init__.codon


default_rng(seed = None)


beta(a, b, size = None)


binomial(n, p, size = None)


bytes(length: int)


chisquare(df, size = None)


choice(a, size = None, replace: bool = True, p = None)


dirichlet(alpha, size = None)


exponential(scale = 1.0, size = None)


f(dfnum, dfden, size = None)


gamma(shape, scale = 1.0, size = None)


geometric(p, size = None)


get_state(legacy: bool)


gumbel(loc = 0.0, scale = 1.0, size = None)


hypergeometric(ngood, nbad, nsample, size = None)


laplace(loc = 0.0, scale = 1.0, size = None)


logistic(loc = 0.0, scale = 1.0, size = None)


lognormal(mean = 0.0, sigma = 1.0, size = None)


logseries(p, size = None)


multinomial(n, pvals, size = None)


multivariate_normal(mean, cov, size = None, check_valid: Literal[str] = "warn", tol: float = 1e-8)


negative_binomial(n, p, size = None)


noncentral_chisquare(df, nonc, size = None)


noncentral_f(dfnum, dfden, nonc, size = None)


normal(loc = 0.0, scale = 1.0, size = None)


pareto(a, size = None)


permutation(x)


poisson(lam = 1.0, size = None)


power(a, size = None)


rand(*d)


randint(low, high = None, size = None, dtype: type = int)


randn(*d)


random(size = None)


random_integers(low, high = None, size = None)


random_sample(size = None)


ranf(size = None)


rayleigh(scale = 1.0, size = None)


sample(size = None)


seed(seed = None)


set_state(state)


shuffle(x)


standard_cauchy(size = None)


standard_exponential(size = None)


standard_gamma(shape, size = None)


standard_normal(size = None)


standard_t(df, size = None)


triangular(left, mode, right, size = None)


uniform(low = 0.0, high = 1.0, size = None)


vonmises(mu, kappa, size = None)


wald(mean, scale, size = None)


weibull(a, size = None)


zipf(a, size = None)